[http://www.britannica.com/EBchecked/topic/176118/Earth-sciences/60418/Understanding-of-clouds-fog-and-dew]

...

Observation and study of storms

Storms, particularly tropical revolving storms, were subjects of much interest. As early as 1697 some of the more spectacular features of revolving storms were recorded in William Dampier’s New Voyage Round the World. On July 4, 1687, Dampier’s ship survived the passage of what he called a "tuffoon" off the coast of China. The captain’s vivid account of this experience clearly describes the calm central eye of the storm and the passage of winds from opposite directions as the storm moved past. In 1828 Heinrich Wilhelm Dove, a Prussian meteorologist, recognized that tropical revolving storms are traveling systems with strong winds moving counterclockwise in the Northern Hemisphere and clockwise in the Southern Hemisphere. The whirlwind character of these storms was independently established by the American meteorologist William C. Redfield in the case of the September hurricane that struck New England in 1821. He noted that in central Connecticut the trees had been toppled toward the northwest, whereas some 80 kilometres westward they had fallen in the opposite direction. Redfield identified the belt between the Equator and the tropics as the region in which hurricanes are generated, and he recognized how the tracks of these storms tend to veer eastward when they enter the belt of westerly winds at about latitude 30° N. In 1849 Sir William Reid, a British meteorologist and military engineer, studied the revolving storms that occur south of the Equator in the Indian Ocean and confirmed that they have reversed rotations and curvatures of path compared with those of the Northern Hemisphere. Capt. Henry Piddington subsequently investigated revolving storms affecting the Bay of Bengal and Arabian Sea, and in 1855 he named these cyclones in his Sailor’s Horn-book for the Laws of Storms in all Parts of the World.

Beginning in 1835, James Pollard Espy, an American meteorologist, began extensive studies of storms from which he developed a theory to explain their sources of energy. Radially convergent winds, he believed, cause the air to rise in their area of collision. Upward movement of moist air is attended by condensation and precipitation. Latent heat released through the change of vapour to cloud or water causes further expansion and rising of the air. The higher the moist air rises the more the equilibrium of the system is disturbed, and this equilibrium cannot be restored until moist air at the surface ceases to flow toward the ascending column.

That radially convergent winds are not necessary to the rising of large air masses was demonstrated by Loomis in the case of a great storm that passed across the northeastern United States in December 1836. From his studies of wind patterns, changes of temperature, and changes in barometric pressure, he concluded that a cold northwest wind had displaced a wind blowing from the southeast by flowing under it. The southeast wind made its escape by ascending from the Earth’s surface. Loomis had recognized what today would be called a frontal surface.

...