10[http://en.wikipedia.org/wiki/Metacentric_height]

Metacentric height

From Wikipedia, the free encyclopedia

Ship Stability diagram showing centre of gravity (G), centre of buoyancy (B), and metacentre (M) with ship upright and heeled over to one side. Note that for small angles, G and M are fixed, while B moves as the ship heels, while for big angles both B and M are moving.The metacentric height is a measurement of the initial static stability of a floating body. It is calculated as the distance between the centre of gravity of a ship and its metacentre (GM). A larger metacentric height implies greater initial stability against overturning. Metacentric height also has implication on the natural period of rolling of a hull, with very large metacentric heights being associated with shorter periods of roll which are uncomfortable for passengers. Hence, a sufficiently high but not excessively high metacentric height is considered ideal for passenger ships.

...

Stability

GM and rolling period

Metacentre has a direct relationship with a ship's rolling period. A ship with a small GM will be "tender" - have a long roll period. An excessively low or negative GM increases the risk of a ship capsizing in rough weather, for example HMS Captain or the Vasa. It also puts the vessel at risk of potential for large angles of heel if the cargo or ballast shifts, such as with the Cougar Ace. A ship with low GM is less safe if damaged and partially flooded because the lower metacentric height leaves less safety margin. For this reason, maritime regulatory agencies such as the International Maritime Organization specify minimum safety margins for sea-going vessels. A larger metacentric height on the other hand can cause a vessel to be too "stiff"; excessive stability is uncomfortable for passengers and crew. This is because the stiff vessel quickly responds to the sea as it attempts to assume the slope of the wave. An overly stiff vessel rolls with a short period and high amplitude which results in high angular acceleration. This increases the risk of damage to the ship and to cargo. In contrast a "tender" ship lags behind the motion of the waves and tends to roll at lesser amplitudes. A passenger ship will typically have a long rolling period for comfort, perhaps 12 seconds while a tanker or freighter might have a rolling period of 6 to 8 seconds.